x^2-(29/10)x+1=0

Simple and best practice solution for x^2-(29/10)x+1=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-(29/10)x+1=0 equation:



x^2-(29/10)x+1=0
Domain of the equation: 10)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x^2-(+29/10)x+1=0
We multiply parentheses
x^2-29x^2+1=0
We add all the numbers together, and all the variables
-28x^2+1=0
a = -28; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-28)·1
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{7}}{2*-28}=\frac{0-4\sqrt{7}}{-56} =-\frac{4\sqrt{7}}{-56} =-\frac{\sqrt{7}}{-14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{7}}{2*-28}=\frac{0+4\sqrt{7}}{-56} =\frac{4\sqrt{7}}{-56} =\frac{\sqrt{7}}{-14} $

See similar equations:

| x^2-29/10x+1=0 | | m/2(3+m)=6 | | v5(v–6)=3v+2 | | v/5(v–6)=3v+2 | | 3x^2=9^8 | | 5+n8n=7 | | ⅔x-4=x+1 | | d=5(2)^2 | | d=5(1.5)^2 | | d=5(0.5)^2 | | 0,5-1-(2y+4)=y | | W=-1.5-0.75h | | 11+m=-9 | | d=5(0)^2 | | 1+x^2-2x=0 | | -1=-18/15x | | 1-2x=4,40 | | 6.5y-2.5=108 | | x^2-2x-3,40=0 | | 5+35x=6−23x | | x^2−4x−2=−9x+4 | | x^2/(1+x^2-2x)=4,40 | | 5x+3/2x+5=7 | | 64^x-17*8^x+8=0 | | 5^2x–7^x–5^2x*(35)+7^x*(35)=0 | | 3x-5+2x=6x-4 | | 2f=3=2-3(f=3) | | 15+8p=79 | | 5t-9=56 | | 3z/2-z/3+2z/5=94 | | 35(4x-2)=0.25(6x-5) | | (14x-7)+(11x-2)+76+93=360° |

Equations solver categories